iMUSIC: Iterative MUSIC Algorithm for Joint Sparse Recovery with Any Rank

نویسندگان

  • Kiryung Lee
  • Yoram Bresler
چکیده

We propose a robust and efficient algorithm for the recovery of the jointly sparse support in compressed sensing with multiple measurement vectors (the MMV problem). When the unknown matrix of the jointly sparse signals has full rank, MUSIC is a guaranteed algorithm for this problem, achieving the fundamental algebraic bound on the minimum number of measurements. We focus instead on the unfavorable but practically significant case of rank deficiency or bad conditioning. This situation arises with limited number of measurements, or with highly correlated signal components. In this case MUSIC fails, and in practice none of the existing MMV methods can consistently approach the algebraic bounds. We propose iMUSIC, which overcomes these limitations by combining the advantages of both existing methods and MUSIC. It is a computationally efficient algorithm with a performance guarantee.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A non-iterative method for the electrical impedance tomography based on joint sparse recovery

The purpose of this paper is to propose a non-iterative method for the inverse conductivity problem of recovering multiple small anomalies from the boundary measurements. When small anomalies are buried in a conducting object, the electric potential values inside the object can be expressed by integrals of densities with a common sparse support on the location of anomalies. Based on this integr...

متن کامل

Recovery of Sparse and Low Rank Components of Matrices Using Iterative Method with Adaptive Thresholding

In this letter, we propose an algorithm for recovery of sparse and low rank components of matrices using an iterative method with adaptive thresholding. In each iteration, the low rank and sparse components are obtained using a thresholding operator. This algorithm is fast and can be implemented easily. We compare it with one of the most common fast methods in which the rank and sparsity are ap...

متن کامل

Covariation-based subspace-augmented MUSIC for joint sparse support recovery in impulsive environments

In this paper, we introduce a subspace-augmented MUSIC technique for recovering the joint sparse support of a signal ensemble corrupted by additive impulsive noise. Our approach uses multiple vectors of random compressed measurements and employs fractional lower-order moments stemming from modeling the underlying signal statistics with symmetric alpha-stable distributions. We show through simul...

متن کامل

A Soft-Input Soft-Output Target Detection Algorithm for Passive Radar

Abstract: This paper proposes a novel scheme for multi-static passive radar processing, based on soft-input soft-output processing and Bayesian sparse estimation. In this scheme, each receiver estimates the probability of target presence based on its received signal and the prior information received from a central processor. The resulting posterior target probabilities are transmitted to the c...

متن کامل

Compressed Sensing of Simultaneous Low-Rank and Joint-Sparse Matrices

In this paper we consider recovery of a high dimensional data matrix from a set of incomplete and noisy linear measurements. We introduce a new model which can efficiently restricts the degrees of freedom of data and, at the same time, is generic so that finds varieties of applications, namely, in multichannel signal compressed sensing (e.g. sensor networks, hyperspectral imaging) and compressi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1004.3071  شماره 

صفحات  -

تاریخ انتشار 2010